ON GENERATING FUNCTIONS OF MODIFIED GEGENBAUER POLYNOMIALS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

tutte polynomials of wheels via generating functions

we find an explicit expression of the tutte polynomial of an $n$-fan. we also find a formula of the tutte polynomial of an $n$-wheel in terms of the tutte polynomial of $n$-fans. finally, we give an alternative expression of the tutte polynomial of an $n$-wheel and then prove the explicit formula for the tutte polynomial of an $n$-wheel.

متن کامل

Generalizations and Specializations of Generating Functions for Jacobi, Gegenbauer, Chebyshev and Legendre Polynomials with Definite Integrals

In this paper we generalize and specialize generating functions for classical orthogonal polynomials, namely Jacobi, Gegenbauer, Chebyshev and Legendre polynomials. We derive a generalization of the generating function for Gegenbauer polynomials through extension a two element sequence of generating functions for Jacobi polynomials. Specializations of generating functions are accomplished throu...

متن کامل

On composition of generating functions

In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...

متن کامل

Orthogonal polynomials for modified Gegenbauer weight and corresponding quadratures

In this paper we consider polynomials orthogonal with respect to the linear functional L : P → C, defined by L[p] = ∫ 1 −1 p(x)(1 − x 2)λ−1/2 exp(iζ x) dx, where P is a linear space of all algebraic polynomials, λ > −1/2 and ζ ∈ R. We prove the existence of such polynomials for some pairs of λ and ζ , give some their properties, and finally give an application to numerical integration of highly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Pure and Apllied Mathematics

سال: 2013

ISSN: 1311-8080,1314-3395

DOI: 10.12732/ijpam.v85i5.1